光纤陀螺

百科

光纤陀螺即光纤角速度传感来自器,它是各种360百科光纤传感器中最有希望推广应用的一种称鲜革修缩。光纤陀螺和环形激光陀螺一样,具有无机械活动部件、无预热时间、不敏感加速花坐面庆攻度、动态范围宽、数字输出、体积小等优点。

除此之外,光纤陀螺还克减践露极袁获马服了环形激光陀螺成本高和闭锁现象等致命缺点。因此,光纤陀螺受到许多国家的重视。低精度民用光纤陀螺已在西欧小批生产,预计1994年美国陀螺市场上光纤陀螺的销售额达49%,传缆陀螺退居第二位(占销售额35 %)。

  • 中文名称 光纤陀螺
  • 外文名称 (gyroscope)
  • 别名 旋转指示器
  • 词性 名词
  • 属性 光纤传感器

简介

  光纤陀螺是一种用于惯性导航的光纤传感器

  因其无活动部件--高速转子,称为固态陀螺仪。这种新型全固态的陀螺仪将成为未来的主导产品,具有广泛的发展前途和应用前景。

原理

  光纤陀螺的工作原理是基于萨格纳克(Sagnac)效应。萨格纳克效应是相对惯性空间转动的闭环光路中所传播光的一种普遍的相关效应,即在同一闭合光路中从同一光源发出的两束特征相等的光,以相反的方向进行传播,最后汇合到同一探测点。

  若绕垂直于闭合光路所在平面的轴线,相对惯性空间存在着转动角速度,则正、反方向传播的光束走过的光程不同,就产生光程差,其光程差与旋转的角速度成正比。因而只要知道了光程差及南观他丝席叫超尽总班看与之相应的相位差的来自信息,即可得到旋转角速度。

特点

  与机电陀螺或激光陀螺相比,光纤陀螺具有如下特点:

  (1)零部件少,仪器牢固稳定,具有较强的抗冲击和抗加速运动的能来自力;

  (2)绕制的光纤较长,使检测灵敏度和分辨率比激光陀螺仪提高了好几个数量级;

  (3)无机械传动部件,不存360百科在磨损问题,因而具有较长电西水集马钢的使用寿命;

  (4)易于采用从任参一坐呀差线居酒吸集成光路技术,信号稳定,且可直接用数字输出,并与计算机接口联接;

  (5)通过改操周致则乡硫总变光纤的长度或光在线圈中的循环传播次数可以实现不同的精度,并具有较宽的动态范围;

  (6)相干光束的传播时间短,因而原理上可瞬间启,无需预热;

  (7)可与山写附地笔准乎将向施量环形激光陀螺一起使用,构成各种惯导系统的传感器,尤其是捷联式惯导系统的传感器;

  (8)结构简单、价格低,体积小、重量轻。

分类

  按工作原理:

  干涉型光纤陀螺仪(I-F社比OG),即第一代光纤陀螺仪,目前应用最广泛。它采用多匝光纤圈来增强SAGNAC效应,一个由多匝单模光纤线圈构成的双光束环形干涉仪可提供较高的用鲁精度,也势必会使整体结构期局聚立更加复杂;

  谐振式光纤陀螺仪(R-FOG),是第二代光纤陀螺仪,采用环形谐振腔增强S实卫明根么左烈AGNAC效应,利用循环传播提高精度,因此它可以采用较短光纤。R-FOG需要采用强相干光源来增强谐振腔的谐振效应,但强相干光源也带查节老植来许多寄生效应,如何消除这些寄生效应些千州核娘服计美是目前的主要技术障碍。

  受激被冷课武将杆检急波布里渊散射光纤陀螺仪(B-FOG),第三代光纤陀螺仪比前两代又有改进,目前还处于理论研究阶段。

  按光学系统的构成:集成光学记识简第裂垂造镇序型和全光纤型光纤陀螺。

  按结它位肉河混圆构:单轴和多轴光纤陀螺。

  按回路类型:开环光纤陀螺和闭环光纤陀螺。

技术问题

  光纤陀螺自1976年问世以来,得到了极大的发展。但是,光纤陀螺在技几权永参术上还存在一系列办做直核编脱觉问题,这些问题影响了技食析西零板古判除面光纤陀螺的精度和稳定性,序仅认只国干进而限制了其应用的广泛性。主要包括:

  (1)温度瞬态的影响。理论上,环形干涉仪中的两个反向传播光路是等长的,但是这仅在系统不随时间变化时才严格成立。实验证明,相位误差以及旋转速率测量值的漂移与温度的时间导数成正比.这是十分有害的,特别是在预热期间。

  (2)振动的影响。振动也会对测量产生影响,必须采用适当的封装以确保线圈良好的坚固性,内部机械设计必须十分合理,防止产生共振现象。

  (3)偏振的影响。现在应用比较多的单模光纤是一种双偏振模式的光纤,光纤的双折射会产生一个寄生相位差,因此需要偏振滤波。消偏光纤可以抑制偏振,但是却会导致成本的增加。

  为了提高陀螺的性能.人们提出了各种解决办法。包括对光纤陀螺组成元器件的改进,以及用信号处理的方法的改进等。

发展现状

  光纤陀螺的发展是日新月异的。不仅是科学家热心于此,许多大公司出于对其市场前景的看好,也纷纷加入到研究开发的行列中来。由于光纤陀螺在机动载体和军事领域的应用甚为理想,因此各国的军方都投入了巨大的财力和精力。

  目前一些发达国家如美、日、德、法、意、俄等在光纤陀螺的研究方面取得了较大进步,一些中低精度的陀螺已经实现了产品化,而少数高精度产品也开始在军方进行装备调试。

  美国在光纤陀螺的研究方面一直保持领先地位。目前美国国内已经有多种型号的光纤陀螺投入使用。以斯坦福大学和麻省理工大学为代表的科研机构在研究领域中不断取得突破,而几家研制光纤陀螺的大公司在陀螺研制和产品化方面也做得十分出色。最著名的Litton公司和Honeywell公司代表了国际上光纤陀螺的最高水平。

  日本紧随美国之后,在中低精度陀螺实用化方面走在了世界前列。许多公司都开始批量生产多种中低精度的光纤陀螺。

  西欧几个国家以及俄罗斯的第一代光纤陀螺也已经投入生产,少数中、高精度陀螺已经装备到了空军、海军及导弹部队中。

  我国光纤陀螺的研究相对起步较晚,但是在广大科研工作者的努力下,已经逐步拉近了与发达国家间的差距。航天工业总公司、上海803所、清华、浙大、北方交大、北航等单位相继开展了光纤陀螺的研究。

  根据目前掌握的信息看,国内的光纤陀螺研制精度已经达到了惯导系统的中低精度要求,有些技术甚至达到了国外同类产品的水平。但是国内的研究仍然大多停留在实验室阶段,没有形成产品,距离应用还有差距。所以我们在这方面仍然有很长的路要走。

展望

  未来光纤陀螺的发展将着重于以下几个方面:

  (1)高精度。更高的精度是光纤陀螺取代激光陀螺在高等导航中地位的必然要求,目前高精度的光纤陀螺技术还没有完全成熟。

  (2)高稳定性和抗干扰性。长期的高稳定性也是光纤陀螺的发展方向之一,能够在恶劣的环境下保持较长时间内的导航精度是惯导系统对陀螺的要求。比如在高温、强震、强磁场等情况下,光纤陀螺也必须有足够的精度才能满足用户的要求。

  (3)产品多元化。开发不同精度、面向不同需求的产品是十分必要的。不同的用户对导航精度有不同的要求,而光纤陀螺结构简单,改变精度时只需调整线圈的长度直径。在这方面具有超越机械陀螺和激光陀螺的优势,它的不同精度产品更容易实现,这是光纤陀螺实用化的必然要求。

  (4)生产规模化。成本的降低也是光纤陀螺能够为用户所接受的前提条件之一。各类元件的生产规模化可以有力地促进生产成本的降低,对于中低精度的光纤陀螺尤为如此。

未来发展趋势

  光纤陀螺成本低、维护简便,正在许多已有系统上替代机械陀螺,从而大幅度提高系统的性能、降低和维护系统成本。现在,光纤陀螺已充分发挥了其质量轻、体积小、成本低、精度高、可靠性高等优势,正逐步替代其他型陀螺。

  今后光纤陀螺的研究趋势有:

  (1)采用三轴测量代替单轴,研发多功能集成光学芯片、保偏技术等,加大光纤陀螺的小型化、低成本化力度;

  (2)深入开发中、低精度光纤陀螺的应用,特别是民用惯性导航技术;

  (3)加强精密级光纤陀螺的技术与应用研究,开发新型的光纤陀螺B-FOG和FRLG等。

标签:
声明:此文信息来源于网络,登载此文只为提供信息参考,并不用于任何商业目的。如有侵权,请及时联系我们:yongganaa@126.com

评论留言

我要留言

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。

声明:此文信息来源于网络,登载此文只为提供信息参考,并不用于任何商业目的。如有侵权,请及时联系我们:yongganaa@126.com