
《统一坐标系下的计算流体力学方法》是2012年3月1日 科学出版社出版的图书。本书是运用大规模数值计算来解决流体的运动问题。
- 书名 统一坐标系下的计算流体力学方法
- ISBN 9787030323194
- 出版社 科学出版社
- 出版时间 第1版 (2012年3月1日)
基本信息
外文书名:Computational Fluid Dynamics Based on the Unified Coordinates
精装: 189页
正文语种: 英语
开本: 16
条形码: 9787030323194
商品尺寸: 23.6 x 15.8 x 史未1.6 cm
商品重量: 422 g
内容简介
众所周知,在流体计算中,一个给定流场的数值解是该流场的流动状态在为其设定的坐标中的体现。计算来自流体力学通常使用的两个坐标系,即欧拉坐标系和拉格朗日坐标系,既有优点又有不足。欧拉方法相对简单,但是其不足在于:(a)对接触间断的分辨率不足;(b)在流体计算之前先要生成贴体坐标。相反地,拉格朗日方法很好地分辨出接触赵过航三黑著振间断(包括物质介面和自由面),但它的缺点在于:(a)气体动力方程不能写成守恒型偏微分方程的形式,使得数值计算复杂和缺乏唯一性;(b)由于网格扭曲导微跟法路文拉半失致计算中断。因此,计算流体力学的基本问题除了越加矛冷处品完即深刻理解物理流动之外,同时也要寻找"最优的"坐标系。统一坐标系方法是《统一坐标系下的计算流体力学方法》第一作者许为厚教授在前人坐标变换的基础上的进一步发展,并在与其同事多年的合作中建立起来的。在计算流体力学的研究中寻找"最优的"坐标系肯定还会继续下去,目前360百科为止,统一坐标系可较没计哪万好地结合前两种坐标系的优点,避免它们的不足。例如,统一坐标系可以通过计算自动生注旧古劳生成网格,而且网格速度也可以考虑加入避免网格大变形的"扩混比地波范吗了练丝散"速度。《统一坐标系下的计算流体力学方法》首先回顾了一维和多维计算流体力学中的欧拉、拉格朗日以及ALE(Arbitrary-Lagrangian-Eulerian)方法的优缺点以及各种倍商品酸权肥呢移动网格方法,然后系统知三来快括画介绍了统一坐标法,用一些具体的算例阐明它和现有方法之间的关系。
目录
搞点军适 Chapter 1 Introduction
1.1 CFD as Numerical Solution to Nonlinear Hyperbolic PDEs
1.2 Rol势职并减最急顾e of Coordinates in CFD
1.3 Outline of the Book
References
Chapter 2 Deriv答圆动主料际几ation of Conservation Law Equati纸ons
2.1 Fluid as a Continuum
2.2 Deriva误压费永行信tion of Conservation Law Equations in Fixed C来自oordinates
2.3 Conservation Law Equations in Moving Coordinates
2.4 Integral Equations versus Partial Differential Equations
2.5 The Entr关耐建弦opy Condition for Inviscid Flow Computation
360百科 Referenc封沿维居es
Chapter 3 Review of Eulerian Computati田差部矿血米思易支on for 1-D Inviscid Flow
3.1 Flow Di含scontinuities an新据求d Rankine-Hugoniot Conditions
3.2 Clas落销sification of Flow Discontinuities
3.3 Riemann Problem and its Solution
3.4 Preliminary Considerations of Numerical Computation
心建万周兰超房啊3.5 Godunov Scheme
3.6 High Resolution Schemes and Limiters
3.7 Defects of Eulerian Computation
References
Chapter 4 I-D Flow Computation Using the Unified Coordinates
4.1 Gas Dynamics Equation鲁课倒方面答复s Based on the Unified Coordin里景刘志因往车势样南ates
4.2 Shock-Adaptiv油序送记轮草e Godunov Scheme
4.3 The Use of Entropy Conservation Law for Smooth Flow Computation
4.4 The Unified Compute盐实明击车r Code
4.5 Cure of Defects o湖动语苏衡式南少限f Eulerian and Lag歌滑rangian Computation by the UC Method
4.6 Conclusions
References
Chapter 5 Comments on Current Methods for Multi-Dimensional Flow Computation
5.1 Eulerian Computation
5.2 Lagrangian Computation
5.3 The ALE Computation
5.4 Moving Mesh Methods
5.5 Optimal Coordinates
References
Chapter 6 The Unified Coordinates Formulation of CFD
6.1 Hui Transformation
6.2 Geometric Conservation Laws
6.3 Derivation of Governing Equations in Conservation Form
References
Chapter 7 Properties of the Unified Coordinates
7.1 Relation to Eulerian Computation
7.2 Relation to Classical Lagrangian Coordinates
7.3 Relation to Arbitrary-Lagrangian-Eulerian Computation
7.4 Contact Resolution
7.5 Mesh Orthogonality
7.6 Unified Coordinates for Steady Flow
7.7 Effects of Mesh Movement on the Flow
7.8 Relation to Other Moving Mesh Methods
7.9 Relation to Mesh Generation and the Level-Set Function Method
References
Chapter 8 Lagrangian Gas Dynamics
8.1 Lagrangian Gas Dynamics Equations
8.2 Weak Hyperbolicity
8.3 Non-Equivalency of Lagrangian and Eularian Formulation
References
Chapter 9 Steady 2-D and 3-D Supersonic Flow
9.1 The Unified Coordinates for Steady Flow
9.2 Euler Equations in the Unified Coordinates
9.3 The Space-Marching Computation
9.4 Examples
……
Chapter 10 Unsteady 2-D and 3-D Flow Computation
Chapter 11 Viscous Flow Computation Using Navier-Stokes Equations
Chapter 12 Applications of the Unified Coordinates to Kinetic Theory
Chapter 13 Summary
Appendix A Riemann Problem for 1-D Flow in the Unified Coordinate
Appendix B Computer Code for 1-D Flow in the Unified Coordinate
评论留言