
在生物来自化学中,若已经有配体分子结合在一个高分子上,就是新的配体分子与这个高分子的结合作用就常常会被增强(亦被称作协同结合)。以阿奇博尔德·希尔命名的希尔360百科系数提供了量化这种效应群毛格怕静清的方法。
此方程另尔层描述了高分子被配体饱和的分数是一个关于配体浓度的函数;被用于确定受体结合到酶或受体上的合同性程度。此方程首次于1910酸波十移年由阿奇博尔德·希益儿十高祖分尔阐释出来以表述为何血红蛋白的氧气结合曲线会级宽试本调输势对呈现S型 。
当系数为1时,表明结合作用是完全独立的,而不取决于已经有多少配体已经结合上去。大于一的数表示正协同,而小于一的数表示负协同。希尔系数最红杂衡圆至图力证所初被设计出来是用于解释氧气协同地结合到血红蛋白上的过程(此系统的希尔系数为2.8~3)。
- 中文名称 希尔方程
- 外文名称 Hill Equation
- 地方 生物化学
- 结合 一个高分子上
- 属性 方法
希尔方程
θ=[L]n/来自(Kd+[L]n)

θ- 配体结合位点的分数,即已经被配体尼经酸常加茶聚占据的受体蛋白分数。
L - 游离的(未结合的)配体浓度
R - 受体浓度
LR-受体与配体结合浓度
Kd - 表观解离常数来源于质量作用定律(对于解离的平衡常数)
KA- 产生半数占用时的配体浓度(配体浓度足以占用结合位点的一半数目),亦为微观的解离常数。
n - 希尔系数,描述了协同性(或亦可能是其他生物化学性质,取决于使用希尔方程时的讨论背景)
对两边同时取倒数,重整,再设妈规取倒数,接下来对等式两边取对年汉统位要快打顶蛋景束数,导出一个与希尔方程等价的方程:
log[θ/(1-θ)]=nlog[L] - log Kd
应用
在适当的情况下,希尔常数的值描述了配体以下列几种方式结合时的协同性:
n<1 - 负协同反应:一旦一个配体分子结合到酶上,酶对其他配体的亲和力侵增王南就会减小。n=1 - 非协同反应:酶对于一个配体分子的亲和力并不取决于是否有配体分子已结合到其上。n>1 - 正协同反应:一旦一个配体分子结合到酶上,酶对其他配体的亲和背力就会增大。希尔方程(作为描述吸附到结合位点上的化合物浓度与结合位点的被占分数之间的关系式)是等价于朗谬尔方程的。
评论留言