量子场物理学

百科

《量子权掉场物理学》作者是(美国)斯通(Michael Stone)。

  • 书名 量子场物理学
  • 作者 (美国)斯通(Michael Stone)
  • ISBN 9787506292764
  • 定价 35.00元
  • 出版时间 2010-4

内容简介

  《量子场物理学》is intended 关穿to provide a general introduction to the physics of quantized fields and many-body physics. It is based on a two-semester sequenc普镇e of courses taught at th益策刻朝角e University of I来自llinois at Urbana-Champaign at various times b360百科etween 1985 and 1997. The students taking all or part of the sequence had interests ranging from particle and nuclear theory through quantum optics to condensed matter physics experiment.

  Th害毫卫南宪天e book does not cover as much ground as some texts. This is because I have tried to concentrate on the basic concep下厂础tual issues tha面纪仅其封裂修t many stu贵运太半dents find difficult. For a computation-m赶庆金是或成该ethod oriented course an instructor would probably wish to suplement this book with a more comprehensive and specialized text such as Peskin and Schroeder An Introduction to Quan顶独确工培着民tum Field Theory, which is intended for particle theorists, or perhaps the venerable Quantum Theory of Many-Particle Systems by Fetter and Walecka.

图书目录

  Preface

  1 Discrete Systems

  1.1 One-Dimensional Harmonic Crystal

  1.1.1 Normal Modes

  1.1.2 术顺富木Harmonic 界速盟坚假脸去十Oscillator

  1.1.3 Annihilation and Creation Operators for Normal Mode医军物愿然s

  1.2 Continuum Limit

  1.2.1 Sum样调自志手s and Integrals

 名仅论海茶宁 1.2.2 Continuum Fields

  2 Relativistic Scalar Fields

  2.1 Convcntions

  2.2 The Klein-Gordon Equation

  2.2.1 Relativistic Normalization

  2.2.2 An Inner Product

  2.2.3 Complex Scalar Fields

  2.3 Symmetries and Noether's Theorem

  2.3.1 Internal Symmetries

  2.3.2 Space-Time Symmetries

  3 Perturbation Theory

  3.1 Interactions

  3.2 Perturbation Theory

  3.2.1 Interaction Picture

  3.2.2 Propagators and Time-Ordered Products

  3.3 Wick's Theorem

  3.3.1 Normal Products

  3.3.2 Wick's Theorem

  3.3.3 Applications

  4 Feynman Rules

  4.1 Diagrams

  4.1.1 Diagrams in Space-time

  4.1.2 Diagrams in Momentum Space

  4.2 Scattering Theory

  4.2.1 Cross-Sections

  4.2.2 Decay of an Unstable Particle

  5 Loops, Unitarity, and Analyticity

  5.1 Unitarity of the S Matrix

  5.2 The Analytic S Matrix

  5.2.1 Origin of Analyticity

  5.2.2 Unitarity and Branch Cuts

  5.2.3 Resonances, Widths, and Lifetimes

  5.3 Some Loop Diagrams

  5.3.1 Wick Rotation

  5.3.2 Feynman Parameters

  5.3.3 Dimensional Regularization

  6 Formal Developments

  6.1 Gell-Mann Low Theorem

  6.2 Lehmann-Kaillen Spectral Representation

  6.3 LSZ Reduction Formulae

  6.3.1 Amputation of External Legs

  6.3.2 In and Out States and Fields

  6.3.3 Borcher's Classes

  7 Fermions

  7.1 Dirac Equation

  7.2 Spinors, Tensors, and Currents

  7.2.1 Field Bilinears

  7.2.2 Conservation Laws

  7.3 Holes and the Dirac Sea

  7.3.1 Positive and Negative Energies

  7.3.2 Holes

  7.4 Quantization

  7.4.1 Normal and Time-Ordered Products

  8 QED

  8.1 Quantizing Maxwell's Equations

  8.1.1 1 Hamiltonian Formalism

  8.1.2 Axial Gauge

  8.1.3 Lorentz Gauge

  8.2 Feynman Rules for QED

  8.2.1 Moiler Scattering

  8.3 Ward Identity and Gauge Invariance

  8.3.1 The Ward Identity

  8.3.2 Applications

  9 Electrons in Solids

  9.1 Second Quantization

  9.2 Fermi Gas and Fermi Liquid

  9.2.1 One-Particle Density Matrix

  9.2.2 Linear Response

  9.2.3 Diagram Approach

  9.2.4 Applications

  9.3 Electrons and Phonons

  10 Nonrelativistic Bosons

  10.1 The Boson Field

  10.2 Spontaneous Symmetry Breaking

  10.3 Dilute Bose Gas

  10.3.1 Bogoliubov Transfomation

  10.3.2 Field Equations

  10.3.3 Quantization

  10.3.4 Landau Criterion for Superfiuidity

  10.3.5 Normal and Superfiuid Densities

  10.4 Charged Bosom

  10.4.1 Gross-Pitaevskii Equation

  10.4.2 Vortices

  10.4.3 Connection with Fluid Mechanics

  11 Finite Temperature

  11.1 Partition Functions

  11.2 Worldlines

  11.3 Matsubara Sums

  12 Path Integrals

  12.1 Quantum Mechanics of a Particle

  12.1.1 Real Time

  12.1.2 Euclidean Time

  12.2 Gauge Invariance and Operator Ordering

  12.3 Correlation Functions

  12.4 Fields

  12.5 Gaussian Integrals and Free Fields

  12.5.1 Real Fields

  12.5.2 Complex Fields

  12.6 Perturbation Theory

  13 Functional Methods

  13.1 Generating Functionals

  13.1.1 Effective Action

  13.2 Ward Identities

  13.2.1 Goldstone's Theorem

  14 Path Integrals for Fermions

  14.1 Berezin Integrals

  14.1.1 A Simple Supersymmetry

  14.2 Fermionic Coherent States

  14.3 Superconductors

  14.3.1 Effective Action

  15 Lattice Field Theory

  15.1 Boson Fields

  15.2 Random Walks

  15.3 Interactions and Bose Condensation

  15.3.1 Rotational Invariance

  15.4 Lattice Fermions

  15.4.1 No Chiral Lattice Fermions

  16 The Renormailzation Group

  16.1 Transfer Matrices

  16.1.1 Continuum Limit

  16.1.2 Two-Dimensional Ising Model

  16.2 Block Spins and Renormalization Group

  16.2.1 Correlation Functions

  17 Fields and Renormalization

  17.1 The Free-Field Fixed Point

  17.2 The Gaussian Model

  17.3 General Method

  17.4 Nonlinear o Model

  17.4.1 Renormalizing

  17.4.2 Solution of the RGE

  17.5 Renormalizing

  18 Large N Expansions

  18.1 O(N) Linear a-Model

  18.2 Large N Expansions

  18.2.1 Linear vs. Nonlinear σ-Models

  A Relativistic State Normalization

  B The General Commutator

  C Dimensional Regularization

  C.I Analytic Continuation and Integrals

  C.2 Propagators

  D Spinors and the Principle of the Sextant

  D.1 Constructing the λ-Matrices

  D.2 Basic Theorem

  D.3 Chirality

  D.4 Spin(2N), Pin(2N), and SU(N) C SO(2N)

  E Indefinite Metric

  F Phonons and Momentum

  G Determinants in Quantum Mechanics

  Index

标签:
声明:此文信息来源于网络,登载此文只为提供信息参考,并不用于任何商业目的。如有侵权,请及时联系我们:yongganaa@126.com

评论留言

我要留言

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。

声明:此文信息来源于网络,登载此文只为提供信息参考,并不用于任何商业目的。如有侵权,请及时联系我们:yongganaa@126.com